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• Go-Jek: multiple moving parts across system, high speed

• Initial Go-Food architecture

• Splitting Go-Food OMS from monolith system: Why, How, 

Result

• Lesson learnt

Covering:



Go-Jek: multiple moving 

parts

• Lots of new products and features across products

• Lots of new services: on-going monolith migrations and/or 

scaling other services



Why did we need to change 

Go-Food engine?

• Scalability and reliability

• New feature development time

• Enabling easier parallel development on 4 streams: resto, 

discovery, discounting, international



(part of) StanMarsh
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Supported Payment Types:

Cash, GoPay (+Partial Payment), Vouchers

Supported Merchant Type:

Non-partner, partner-non goresto, partner-goresto

Pre-Order



Go-Food Order Flow Components & Dependencies
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• Many dependencies

• Some dependencies are also in progress of rewrites: API contracts are moving targets

• Tricky implementation especially in GoPay integration: different DC: network unreliability 

is high

Supported Payment Types:

Cash, GoPay (+Partial Payment), Vouchers

Supported Merchant Type:

Non-partner, partner-non goresto, partner-goresto



(part of) StanMarsh
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Go-Food OMS Rewrite Strategy

For first iteration, we picked a component which 

(relatively) independent to the others -> Price Estimation

Constraints

1. Fast iteration

2. Avoid changes in StanMarsh (as much as we can)

3. 0 dependency to StanMarsh DB

4. Reusable components (gojek platform)

5. 0 downtime and revertible
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Price Estimation - iteration #1
Goal:

0 RPM on stanmarsh’s go-food price estimation API

gofood pricing as source of truth for Go-Food price calculations

consumer

staggered rollout 

by customer id &

Traffic percentage

redis

To avoid downtime and make it revertible,

we did staggered rollout
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(part of) StanMarsh
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To keep ourself focus and easier to maintain data consistency,

we migrated 1 order state flow in one go.

Go-Food OMS Rewrite Strategy - iteration #1 final

HOW TO MANAGE SO MANY DEPENDENCIES

WHILE STILL ACHIEVING FAST ITERATION?



(part of) StanMarsh
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Go-Food OMS Rewrite Strategy - iteration #2 preparing
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To iterate fast, we removed some dependencies

Flow with minimum dependencies is……

Cash - NonVoucher - NonGoResto Order
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Create Order - iteration #2 preparing
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Goal:

0 RPM on stanmarsh’s go-food cash non-voucher non-goresto order creation

0 records of Go-Food cash non-voucher non-goresto order in stanmarsh DB

Create structure of the new Go-Food order management system

consumer

To avoid downtime and make it revertible,

we did staggered rollout

staggered rollout 

by customer id &

Traffic percentage

gofood 
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stanmarsh

gofood oms

IT’S USING A DIFFERENT DB,

HOW SHALL THE USERS SEE ORDER DETAILS?
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Order Detail - iteration #2
Goal:

0 RPM on stanmarsh’s go-food order detail APIs

New Gofood Order Detail as source of truth for all gofood orders details

cust care

driver care

merchant care

driver

Make use of new order number pattern

initial: <numbers>

gofood-stanmarsh: GF-<numbers>

gofood-final: F-<numbers>

gofood 

order detail
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GF-*

F-*

consumer



(part of) StanMarsh
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Go-Food OMS Rewrite - iteration #2 final

LET’S 

CONTINUE

TO

CASH

NON-VOUCHER

NON-GORESTO

ORDER 

FLOW!

ITERATION #3
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(1) create order
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Create Order Cash NonVoucher Non-Goresto - iteration #3
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Create structure of the new Go-Food order management system
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These are (relatively) new services,

we migrated to these new services 

as part of this iteration,

keeping the flow in stanmarsh 

to use the old one
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order detail

(12.a) customer 

should be able to see 

his order in active order list

(12.b) customer 

should be able to see 

his order detail
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Order History - iteration #3
Goal:

0 RPM on stanmarsh’s go-food order history APIs

Use history service as source of truth for customer order history

Get orders which created 

in StanMarsh (existing)

order 

history

Get orders which created 

in new Go-Food OMS
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Order Pickup Cash NonVoucher NonGoresto - iteration #3
Goal:

0 RPM on stanmarsh’s go-food order pickup APIs
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Order Cancellation Cash NonVoucher Non-Goresto - iteration #3
Goal:

0 RPM on stanmarsh’s go-food order cancellation APIs

OMS as order state manager and orchestrator

termination 

service

order 

history

notification

kafka

stream

consumer

consumer

clear driver active order

driver statistic (for performance)

gofood 

order detail

get order detail

get order detail



driver 

platform

gate

switch by 

order number prefix

driver care

gofood oms
driver

consumer

Order Completion Cash NonVoucher Non-Goresto - iteration #3
Goal:

0 RPM on stanmarsh’s go-food order completion APIs

OMS as order state manager and orchestrator
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(part of) StanMarsh
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Go-Food OMS Rewrite - iteration #3 final
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NEXT: 

GOPAY VOUCHER NON-GORESTO

ORDER FLOW! 

ITERATION #4
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cash non-voucher non-goresto flow is covered



Create Order GoPay Voucher NonGoresto - iteration #4

gate
create order

gofood 

pricing

gofood oms allocation

kafka

stream

consumer
driver

driver 

platform

order 

history

notification

notif 

to drivercreate-bid

callback

driver found

driver 

accepts order

poll 

active order detail

mark driver

active order
notif 

driver found

pricing 

platform

gopay-

balance

gopay-

voucher

get voucher detail

get

customer

balance
reserve

voucher

reserve

balance



Order Pickup GoPay Voucher NonGoresto - iteration #4
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Order Cancellation GoPay Voucher Non-Goresto - iteration #4
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Order Completion GoPay Voucher Non-Goresto - iteration #4
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(part of) StanMarsh
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Go-Food OMS Rewrite - iteration #4 final
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NEXT: 

GORESTO

ORDER FLOW! 

ITERATION #5
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cash non-voucher non-goresto flow is covered

gopay voucher non-goresto flow is covered



Order Pickup GoResto - iteration #5
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Order Completion Goresto - iteration #5
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customer: full price

driver: only delivery price



(part of) StanMarsh
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Go-Food OMS Rewrite - iteration #5 final
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cash non-voucher non-goresto flow is covered

gopay voucher non-goresto flow is covered

goresto flow is covered

MISSION ACCOMPLISHED!



good bye!

thanks for

everything.
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Lesson Learnt

Migrate business flow

Faster to execute, minimize moving dependencies

Proving scalability: independent between flows (domain driven design) 

Easy to control traffic for the rest of the flow

Split datasource first
To avoid data consistency potential issue

Staggered rollout

Load control

Isolating impact

Easy to rollback

Eventual consistency

To avoid multi-dependencies transaction hell

Stable on sudden traffic

Automated test
Defining the expected behaviour for the new service

Make development a lot faster

Monitoring and alerts
Visualize the traffic switching

Get failure feedbacks, enabling fast rollback



Thanks

If you think this is a challenging stuff,

just keep in mind that

We’re always hiring.

https://www.go-jek.com/careers/search/?type=function&search=engineer


