
Go-Food
Changing Car’s Engine While on a Race

Bergas Bimo Branarto

Software Engineer



• Go-Jek: multiple moving parts across system, high speed

• Initial Go-Food architecture

• Splitting Go-Food OMS from monolith system: Why, How, 

Result

• Lesson learnt

Covering:



Go-Jek: multiple moving 

parts

• Lots of new products and features across products

• Lots of new services: on-going monolith migrations and/or 

scaling other services



Why did we need to change 

Go-Food engine?

• Scalability and reliability

• New feature development time

• Enabling easier parallel development on 4 streams: resto, 

discovery, discounting, international



(part of) StanMarsh

Price 

Estimation

Create

Order

Order

Pickup

Order

Cancellation

Order

Completion

Order State Flow

Order 

History

Order 

Detail

order 

history

Order(s) View

Go-Food Order Flow Components & Dependencies - Initial

gopay-

voucher

allocation

driver 

platform

gopay-

balance

gofood cms

goresto

pricing 

platform

pricing 

platform

gopay-

voucher

gopay-

balance

goresto

notification

gopay-

voucher

gopay-

balance

driver 

platform

notification

termination 

service

driver 

platform

gopay-

voucher

gopay-

balance

driver 

platform

notification

termination 

service

pricing 

platform

gopay-

voucher

gopay-

balance

Supported Payment Types:

Cash, GoPay (+Partial Payment), Vouchers

Supported Merchant Type:

Non-partner, partner-non goresto, partner-goresto

Pre-Order



Go-Food Order Flow Components & Dependencies

order 

history

gopay-

voucher

allocation

driver 

platform

gopay-

balance

gofood cms

goresto

pricing 

platform

pricing 

platform

gopay-

voucher

gopay-

balance

goresto

notification

gopay-

voucher

gopay-

balance

driver 

platform

notification

termination 

service

driver 

platform

gopay-

voucher

gopay-

balance

driver 

platform

notification

termination 

service

pricing 

platform

gopay-

voucher

gopay-

balance

• Many dependencies

• Some dependencies are also in progress of rewrites: API contracts are moving targets

• Tricky implementation especially in GoPay integration: different DC: network unreliability 

is high

Supported Payment Types:

Cash, GoPay (+Partial Payment), Vouchers

Supported Merchant Type:

Non-partner, partner-non goresto, partner-goresto



(part of) StanMarsh

Price 

Estimation

Create

Order

Order

Pickup

Order

Cancellation

Order

Completion

Order State Flow

Order 

History

Order 

Detail

Order(s) ViewPre-Order

Go-Food OMS Rewrite Strategy

For first iteration, we picked a component which 

(relatively) independent to the others -> Price Estimation

Constraints

1. Fast iteration

2. Avoid changes in StanMarsh (as much as we can)

3. 0 dependency to StanMarsh DB

4. Reusable components (gojek platform)

5. 0 downtime and revertible

New System

Price 

Estimation

Create

Order

Order

Pickup

Order

Cancellation

Order

Completion

Order State Flow

Order 

History

Order 

Detail

Order(s) ViewPre-Order



stanmarsh

gate

gofood 

pricing

price estimation

switch by 

product

Price Estimation - iteration #1
Goal:

0 RPM on stanmarsh’s go-food price estimation API

gofood pricing as source of truth for Go-Food price calculations

consumer

staggered rollout 

by customer id &

Traffic percentage

redis

To avoid downtime and make it revertible,

we did staggered rollout

pricing 

platform

gopay-

voucher

gopay-

balance



(part of) StanMarsh

Create

Order

Order

Pickup

Order

Cancellation

Order

Completion

Order State Flow

Order 

History

Order 

Detail

Order(s) View

Price 

Estimation

Pre-Order

GoFood Pricing

Price 

Estimation

Pre-Order

New System

Create

Order

Order

Pickup

Order

Cancellation

Order

Completion

Order State Flow

Order 

History

Order 

Detail

Order(s) View

To keep ourself focus and easier to maintain data consistency,

we migrated 1 order state flow in one go.

Go-Food OMS Rewrite Strategy - iteration #1 final

HOW TO MANAGE SO MANY DEPENDENCIES

WHILE STILL ACHIEVING FAST ITERATION?



(part of) StanMarsh

Create

Order

Order

Pickup

Order

Cancellation

Order

Completion

Order State Flow

Order 

History

Order 

Detail

Order(s) View

Go-Food OMS Rewrite Strategy - iteration #2 preparing

order 

history

allocation

driver 

platform

pricing 

platform

pricing 

platform

goresto

goresto

notification

driver 

platform

notification

termination 

service

driver 

platform

gopay-

voucher

gopay-

voucher

gopay-

voucher

gopay-

voucher

gopay-

balance

gopay-

balance

gopay-

balance

gopay-

balance

driver 

platform

notification

termination 

service

To iterate fast, we removed some dependencies

Flow with minimum dependencies is……

Cash - NonVoucher - NonGoResto Order



gate
create order

switch by 

product

Create Order - iteration #2 preparing

cash-voucher

gopay-nonvoucher

gopay-voucher

Goresto 

cash/gopay/voucher

GF-<number>

F-<number>

Goal:

0 RPM on stanmarsh’s go-food cash non-voucher non-goresto order creation

0 records of Go-Food cash non-voucher non-goresto order in stanmarsh DB

Create structure of the new Go-Food order management system

consumer

To avoid downtime and make it revertible,

we did staggered rollout

staggered rollout 

by customer id &

Traffic percentage

gofood 

pricing

stanmarsh

gofood oms

IT’S USING A DIFFERENT DB,

HOW SHALL THE USERS SEE ORDER DETAILS?



stanmarsh

gate

Order detail

driver 

platform

Order detail

switch by 

order number prefix
switch by 

order number prefix

Order Detail - iteration #2
Goal:

0 RPM on stanmarsh’s go-food order detail APIs

New Gofood Order Detail as source of truth for all gofood orders details

cust care

driver care

merchant care

driver

Make use of new order number pattern

initial: <numbers>

gofood-stanmarsh: GF-<numbers>

gofood-final: F-<numbers>

gofood 

order detail

gofood oms

GF-*

F-*

consumer



(part of) StanMarsh

Create

Order

Order

Pickup

Order

Cancellation

Order

Completion

Order State Flow

Order 

Detail

Order 

History

Order(s) View

GoFood Pricing

Price 

Estimation

Pre-Order

Order 

Detail

Order(s) View

GoFood 

Order Detail

Go-Food OMS Rewrite - iteration #2 final

LET’S 

CONTINUE

TO

CASH

NON-VOUCHER

NON-GORESTO

ORDER 

FLOW!

ITERATION #3



gate
(1) create order

gofood 

pricing

gofood oms

Create Order Cash NonVoucher Non-Goresto - iteration #3

allocation

kafka

stream

Goal:

Create structure of the new Go-Food order management system

consumer
driver

driver 

platform

order 

history

(2) POST 

create-order

(3) POST 

price-calculation

(5) notif 

to driver

(4.a) POST 

create-bid

(4.b) response

order created

(7) callback

driver found

(6.a) driver 

accepts order

(6.b) poll 

active order detail

(8) mark driver

active order

notification

(9.a) POST 

cust-notif 
(10) push

event(9.b) notif 

driver found

(11) consume

These are (relatively) new services,

we migrated to these new services 

as part of this iteration,

keeping the flow in stanmarsh 

to use the old one

pricing 

platform

(3.b) get 

delivery pricegofood 

order detail

(12.a) customer 

should be able to see 

his order in active order list

(12.b) customer 

should be able to see 

his order detail



stanmarsh

gate
order history

switch by 

product

consumer

Order History - iteration #3
Goal:

0 RPM on stanmarsh’s go-food order history APIs

Use history service as source of truth for customer order history

Get orders which created 

in StanMarsh (existing)

order 

history

Get orders which created 

in new Go-Food OMS



gate

switch by 

order number prefix

gofood oms

driver
consumer

Order Pickup Cash NonVoucher NonGoresto - iteration #3
Goal:

0 RPM on stanmarsh’s go-food order pickup APIs

order 

history

notification

kafka

stream

gofood 

pricing

price

recalculation

gofood 

order detail

pricing 

platform



driver 

platform

gate

switch by 

order number prefix

driver care

gofood oms

driver

driver

Order Cancellation Cash NonVoucher Non-Goresto - iteration #3
Goal:

0 RPM on stanmarsh’s go-food order cancellation APIs

OMS as order state manager and orchestrator

termination 

service

order 

history

notification

kafka

stream

consumer

consumer

clear driver active order

driver statistic (for performance)

gofood 

order detail

get order detail

get order detail



driver 

platform

gate

switch by 

order number prefix

driver care

gofood oms
driver

consumer

Order Completion Cash NonVoucher Non-Goresto - iteration #3
Goal:

0 RPM on stanmarsh’s go-food order completion APIs

OMS as order state manager and orchestrator

termination 

service

order 

history

notification

kafka

stream

clear driver active order

driver statistic (for performance)

driver rewards

gofood 

order detail



(part of) StanMarsh

Create

Order

Order

Pickup

Order

Cancellation

Order

Completion

Order State Flow

Order 

History

Orders View

GoFood Pricing

Price 

Estimation

Pre-Order

Order 

Detail

Order(s) View

Go-Food OMS Rewrite - iteration #3 final

GoFood 

Order Detail

NEXT: 

GOPAY VOUCHER NON-GORESTO

ORDER FLOW! 

ITERATION #4

Go-Food OMS

Create

Order

Order

Pickup

Order

Cancellation

Order

Completion

Order State Flow

Order 

History

Order History

cash non-voucher non-goresto flow is covered



Create Order GoPay Voucher NonGoresto - iteration #4

gate
create order

gofood 

pricing

gofood oms allocation

kafka

stream

consumer
driver

driver 

platform

order 

history

notification

notif 

to drivercreate-bid

callback

driver found

driver 

accepts order

poll 

active order detail

mark driver

active order
notif 

driver found

pricing 

platform

gopay-

balance

gopay-

voucher

get voucher detail

get

customer

balance
reserve

voucher

reserve

balance



Order Pickup GoPay Voucher NonGoresto - iteration #4

gate

switch by 

order number prefix

gofood oms

driver
consumer

order 

history

notification

kafka

stream

gofood 

pricing

gofood 

order detail

pricing 

platform

gopay-

balance

gopay-

voucher

re-reservation

re-reservation



driver 

platform

gate

driver care

gofood oms

driver

driver

Order Cancellation GoPay Voucher Non-Goresto - iteration #4

termination 

service

order 

history

notification

kafka

stream

consumer

consumergofood 

order detail

get order detail

get order detail

gopay-

balance

gopay-

voucher

cancel

reservation

cancel

reservation



driver 

platform

gate

driver care

gofood oms

driver

Order Completion GoPay Voucher Non-Goresto - iteration #4

termination 

service

order 

history

notification

kafka

stream

consumer

gofood 

order detail

get order detail

gopay-

balance

gopay-

voucher

customer + driver

transaction

voucher

redemption



(part of) StanMarsh

Create

Order

Order

Pickup

Order

Cancellation

Order

Completion

Order State Flow

Order 

History

Orders View

GoFood Pricing

Price 

Estimation

Pre-Order

Order 

Detail

Order(s) View

Go-Food OMS Rewrite - iteration #4 final

GoFood 

Order Detail

NEXT: 

GORESTO

ORDER FLOW! 

ITERATION #5

Go-Food OMS

Create

Order

Order

Pickup

Order

Cancellation

Order

Completion

Order State Flow

Order 

History

Order History

cash non-voucher non-goresto flow is covered

gopay voucher non-goresto flow is covered



Order Pickup GoResto - iteration #5

gate

switch by 

order number prefix

gofood oms

driver
consumer

order 

history

notification

kafka

stream

gofood 

pricing

gofood 

order detail

pricing 

platform

gopay-

balance

gopay-

voucher

goresto

Pin validation

consume

driver + merchant

transaction



Order Completion Goresto - iteration #5

driver 

platform

gate

driver care

gofood oms

driver

termination 

service

order 

history

notification

kafka

stream

consumer

gofood 

order detail

get order detail

gopay-

balance

gopay-

voucher

customer + driver

transaction

voucher

redemption

transaction

customer: full price

driver: only delivery price



(part of) StanMarsh

Create

Order

Order

Pickup

Order

Cancellation

Order

Completion

Order State Flow

Order 

History

Orders View

GoFood Pricing

Price 

Estimation

Pre-Order

Order 

Detail

Order(s) View

Go-Food OMS Rewrite - iteration #5 final

GoFood 

Order Detail

Go-Food OMS

Create

Order

Order

Pickup

Order

Cancellation

Order

Completion

Order State Flow

Order 

History

Order History

cash non-voucher non-goresto flow is covered

gopay voucher non-goresto flow is covered

goresto flow is covered

MISSION ACCOMPLISHED!



good bye!

thanks for

everything.
stanmarsh

gofood cms

gate

gofood oms

gofood 

order detail

gofood 

pricing

goresto

gopay-

voucher

allocation

driver 

platform

termination 

service

order 

history

gopay-

balance

notification

kafka

stream

Go-Food Order Flow Components 

& Dependencies - Final



Lesson Learnt

Migrate business flow

Faster to execute, minimize moving dependencies

Proving scalability: independent between flows (domain driven design) 

Easy to control traffic for the rest of the flow

Split datasource first
To avoid data consistency potential issue

Staggered rollout

Load control

Isolating impact

Easy to rollback

Eventual consistency

To avoid multi-dependencies transaction hell

Stable on sudden traffic

Automated test
Defining the expected behaviour for the new service

Make development a lot faster

Monitoring and alerts
Visualize the traffic switching

Get failure feedbacks, enabling fast rollback



Thanks

If you think this is a challenging stuff,

just keep in mind that

We’re always hiring.

https://www.go-jek.com/careers/search/?type=function&search=engineer


